(通讯和第一作者SCI索引论文)
42. Y. Bo, Y. Zai, Z. Luo, X. Liu*. Amplifier based on NbOx volatile memristor, in preparation.
41. Y. Zai, Y. Bo, S. K. Nath, Q. Yu, J. Song, Y. Zhang, X. Liu*. High amplification factor and fidelity for weak signals based on MoS2 volatile memristor, in preparation.
40. Y. Li, Y. Liu, W. Sun, C. G. Jenson, S. M. Sadaf, Q. Yu, J. Song, Y. Zhang, X. Liu*. Asymmetrical response of NbO₂-based neuristor for three-dimensional sound localization, in revision.
39. W. Sun, Y. Li, C. G. Jenson, S. M. Sadaf, Q. Yu, Y. Zhang, X. Liu*. Biomimetic spider web sensor designed with memristive oscillators for location-resolved disturbance detection,Applied Physics Letters, 126, accepted, (2025). doi: 10.1063/5.0249837
38. W. Dong, X. Ji, C. An, C. Xu, X. Zhang, B. Zhao, Y. Liu, S. Wang, X. Yu*, X. Liu*, Y. Han*, Y. Geng. Harnessing conversion bridge strategy by organic semiconductor in polymer matrix memristors for high-performance multi-modal neuromorphic signal processing. InfoMat, 2025; e12659, (2025). doi: 10.1002/inf2.12659
37. 丁锐锋,刘新军,肖志博,李乐,刘宇浩,王瑜,陈奕霖,张亦文. 用菲涅尔透镜思想减薄凹锥透镜实现环形彩虹,物理与工程, 2025(录用).
36. 刘新军,王瑜,陈奕霖,廖怡,张玉杭,张金凤,张亦文,庞海,戴海涛. 塑料沙彩色光圈现象及其色散特性分析,物理实验, 44(11), 14-20+27, 2024.
doi: 10.19655/j.cnki.1005-4642.2024.11.002
35. 刘新军,肖志博,刘宇浩,陈奕霖,丁锐锋,李乐,张亦文. 通过旋转三棱镜获得凹锥透镜研究环形彩虹, 物理实验, 44(6), 11-17, 2024.
doi: 10.19655/j.cnki.1005-4642.2024.06.002
34. 刘新军. 阳光透过鱼缸投射出4级彩虹的光路分析, 物理实验, 42(6), 14-20+25, 2022.
doi: 10.19655/j.cnki.1005-4642.2022.06.003
33. 刘新军. 阳光透过鱼缸在室内墙上投射出米级亮丽彩虹, 物理实验, 42(5), 23-39+47, 2022. doi: 10.19655/j.cnki.1005-4642.2022.05.004
32. X. Liu*, P. Zhang, S.K. Nath, S. Li, S.K. Nandi, R.G. Elliman. Understanding composite negative differential resistance in niobium oxide memristors, Journal of Physics D: Applied Physics, 55, 105106 (2022).
https://doi.org/10.1088/1361-6463/ac3bf4
31. Z. Luo, Y. Bo, S.M. Sadaf, X. Liu*. Van der Pol oscillator based on NbO2 volatile memristor: A simulation analysis, Journal of Applied Physics, 131, 054501, (2022).
https://doi.org/10.1063/5.0073285
30. Y. Bo, P. Zhang, Z. Luo, S. Li, J. Song, and X. Liu*. NbO2 memristive neurons for burst-based perceptron, Advanced Intelligent Systems, 2, 2000066 (2020). https://doi.org/10.1002/aisy.202000066;
X. Liu, Artificial neural networks built with memristive neurons, Advanced Science News, based on the article from Advanced Intelligent Systems (2020).
https://www.advancedsciencenews.com/artificial-neural-networks-built-with-memristive-neurons/
29. Y. Bo, P. Zhang, Y. Zhang, J. Song, S. Li, and X. Liu*. Spiking dynamic behaviours of NbO2 memristive neurons: A model study, Journal of Applied Physics, 127, 245101, (2020). [Featured Article] https://doi.org/10.1063/5.0004139
28. S. Li, X. Liu*, S.K. Nandi, S.K. Nath, and R.G. Elliman*. Origin of current-controlled negative differential resistance modes and the emergence of composite characteristics with high complexity, Advanced Functional Materials, 1905060, (2019). https://doi.org/10.1002/adfm.201905060
27. P. Zhang, S. Li, Y.H. Bo, and X. Liu*. Collective dynamics of capacitively coupled oscillators based on NbO2 memristors, Journal of Applied Physics, 126, 125112, (2019). https://doi.org/10.1063/1.5116777
26. S. Li, X. Liu, S.K. Nandi, and R.G. Elliman. Anatomy of filamentary threshold switching in amorphous niobium oxide, Nanotechnology, 29, 375705, (2018). https://doi.org/10.1088/1361-6528/aacee4
25. S.K. Nandi, S. Li, X. Liu, and R.G. Elliman. Temperature dependent frequency tuning of NbOx relaxation oscillators, Applied Physics Letters, 111, 202901, (2017). https://doi.org/10.1063/1.4999373
24. S. Li, X. Liu, S.K. Nandi, D.K. Venkatachalam, and R.G. Elliman. Coupling dynamics of Nb/Nb2O5 relaxation oscillators, Nanotechnology, 28, 125201, (2017). https://doi.org/10.1088/1361-6528/aa5de0
23. X. Liu(刘新军), S. Li, S.K. Nandi, D.K. Venkatachalam, and R.G. Elliman. Threshold switching and electrical self-oscillation in niobium oxide films, Journal of Applied Physics, 120, 124102, (2016). https://doi.org/10.1063/1.4963288
22. S.K. Nandi, X. Liu, D.K. Venkatachalam, and R.G. Elliman. Self-assembly of an NbO2 interlayer and configurable resistive switching in Pt/Nb/HfO2/Pt structures, Applied Physics Letters, 107, 132901, (2015). https://doi.org/10.1063/1.4932096
21. S. Li, X. Liu, S.K. Nandi, D.K. Venkatachalam, and R.G. Elliman. High-endurance megahertz electrical self-oscillations in Ti/NbOx bilayer structures, Applied Physics Letters, 106, 212902, (2015). https://doi.org/10.1063/1.4921745
20. X. Liu(刘新军), S.K. Nandi, D.K. Venkatachalam, K. Belay, S. Song, and R.G. Elliman. Reduced threshold current in NbO2 selector by engineering device structure, IEEE Electron Device Letters, 35,1055-1057, (2014). https://doi.org/10.1109/LED.2014.2344105
19. X. Liu, S.K. Nandi, D.K. Venkatachalam, S. Li, K. Belay, and R.G. Elliman. Finite element modelling of resistive switching in Nb2O5-based memory device, Conference on Optoelectronic and Microelectronic Materials & Devices (COMMAD), P280-282 (2014). https://doi.org/10.1109/COMMAD.2014.7038711
18. X. Liu, S.M. Sadaf, S. Park, S. Kim, E. Cha, D. Lee, G.-Y. Jung, and H. Hwang. Complementary resistive switching in niobium oxide-based resistive memory devices, IEEE Electron Device Letters, 34, 235-237, (2013). https://doi.org/10.1109/LED.2012.2235816
17. X. Liu, S.M. Sadaf, S. Kim, K.P. Biju, X. Cao, M. Son, S.H. Choudhury, G.-Y. Jung, H. Hwang. Improvement of resistive switching uniformity by introducing a thin NbOx interface layer, ECS Solid State Letters, 1, Q35-Q38, (2012). https://doi.org/10.1149/2.004205ssl
16. X. Liu, K.P. Biju, J. Park, S. Park, J. Shin, I. Kim, S.M. Sadaf, and H. Hwang. Low power and controllable memory window in Pt/Pr0.7Ca0.3MnO3/Yttria-stabilized Zirconia/W resistive random-access memory devices, Journal of Nanoscience and Nanotechnology, 12, 3252-3255, (2012). https://doi.org/10.1166/jnn.2012.5606
15. X. Liu, S.M. Sadaf, M. Son, J. Park, J. Shin, W. Lee, K. Seo, D. Lee, and H. Hwang. Co-occurrence of threshold switching and memory switching in Pt/NbOx/Pt cells for cross point memory applications, IEEE Electron Device Letters, 33, 236-238, (2012). https://doi.org/10.1109/LED.2011.2174452
14. X. Liu, S.M. Sadaf, M. Son, J. Shin, J. Park, J. Lee, S. Park, and H. Hwang. Diode-less bilayer oxide (WOx–NbOx) device for cross-point resistive memory applications, Nanotechnology, 22, 475702, (2011). https://doi.org/10.1088/0957-4484/22/47/475702
13. X. Liu, K.P. Biju, J. Lee, J. Park, S. Kim, S. Park, J. Shin, S.M. Sadaf, and H. Hwang. Parallel memristive filaments model applicable to bipolar and filamentary resistive switching, Applied Physics Letters, 99, 113518, (2011). https://doi.org/10.1063/1.3638486
12. X. Liu, K.P. Biju, E.M. Bourim, S. Park, W. Lee, D. Lee, K. Seo, and H. Hwang. Filament-type resistive switching inhomogeneous bi-layer Pr0.7Ca0.3MnO3 thin film memory devices, Electrochemical and Solid-State Letters,14, H9-H12, (2011). https://doi.org/10.1149/1.3505098
11. X. Liu, K.P. Biju, S. Park, I. Kim, M. Siddik, S.M. Sadaf, and H. Hwang. Improved resistive switching properties in Pt/Pr0.7Ca0.3MnO3/Y2O3-stabilized ZrO2/W via-hole structures, Current Applied Physics, 11, e58-e61, (2011). https://doi.org/10.1016/j.cap.2010.11.123
10. X. Liu, I. Kim, M. Siddik, S.M. Sadaf, K. P. Biju, S. Park, and H. Hwang. Resistive switching mechanism of a Pr0.7Ca0.3MnO3-basedmemory device and assessment of its suitability for nano-scale applications, Journal of the Korean Physical Society, 59, 497-500, (2011). https://doi.org/10.3938/jkps.59.497
9. X. Liu, K.P. Biju, E.M. Bourim, S. Park, W. Lee, J. Shin, and H. Hwang. Low programming voltage resistive switching in reactive metal/polycrystalline Pr0.7Ca0.3MnO3devices, Solid State Communications, 150, 2231-2235, (2010). https://doi.org/10.1016/j.ssc.2010.09.036
8. X. Liu, X. Li, W. Yu, Q. Wang, R. Yang, X. Cao, and L. Chen. Improved resistive switching properties in Ti/TiOx/La0.7Ca0.3MnO3/Pt stacked structures, Solid State Communications,150, 137-141, (2010). https://doi.org/10.1016/j.ssc.2009.09.032
7. X. Liu, X. Li, R. Yang, Q. Wang, X. Cao, W. Yu, and L. Chen. Interfacial resistive switching properties in Ti/La0.7Ca0.3MnO3/Pt sandwich structures, Physica Status Solidi (A): Applications and Materials Science, 207, 1204-1209, (2010). https://doi.org/10.1002/pssa.200925409
6. 刘新军, 李效民, 王群, 杨蕊, 曹逊, 陈立东. Ti/La0.7Ca0.3MnO3/Pt结构器件中“负”电阻开关特性研究, 无机材料学报, 25, 151-156, (2010). https://doi.org/10.3724/SP.J.1077.2010.00151
5. X. Liu, X. Li, W. Yu, Q. Wang, R. Yang, X. Cao, and L. Chen. Bipolar resistance switching property of Al-Ag/La0.7Ca0.3MnO3/Pt sandwiches, Journal of the Ceramic Society of Japan, 117,732-735, (2009). https://doi.org/10.2109/jcersj2.117.732
4. X. Liu, Z. Li, P. Wu, H. Bai, and E. Jiang. The Effect of Fe doping on structural, magnetic and electrical transport properties of CaMn1-xFexO3 (x=0-0.35), Solid State Communications, 142, 525–530, (2007). https://doi.org/10.1016/j.ssc.2007.03.021
3. X. Liu, Z. Li, A. Yu, M. Liu, W. Li, B. Li, P. Wu, H. Bai, and E. Jiang. Magnetic, electrical transport and electron spin resonance studies of Fe-doped manganite LaMn0.7Fe0.3O3+δ, Journal of Magnetism and Magnetic Materials, 313, 354–360, (2007). https://doi.org/10.1016/j.jmmm.2007.02.003
2. X. Liu, E. Jiang, Z. Li, B. Li, W. Li, A. Yu, P. Wu, and H. Bai. Magnetic, electrical transport and electron spin resonance studies of ferromagnetic insulating manganites Nd0.85Na0.15MnO3, Journal of Magnetism and Magnetic Materials,305, 352–356, (2006). https://doi.org/10.1016/j.jmmm.2006.01.025
1. X. Liu, E. Jiang, Z. Li, B. Li, W. Li, A. Yu, and H. Bai. Magnetic, electrical transport and electron spin resonance studies of charge-ordered Nd0.75Na0.25MnO3, Physica B, 348, 146–150, (2004). https://doi.org/10.1016/j.physb.2003.11.084